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INTRODUCTION

Let X be a linear space, let Y and Z be normed spaces, and let We X.
Consider the problem of optimal recovery of the operator L: W --+ Z using
the values of the information operator 1:= W --+ Y in the case where those
values are inaccurate ones. More precisely, let us consider the extremal
problem

E(L, I, <5) = inf sup IILx - SYII,
S XE RI"

IIlx-yll";o

(1)

where S: Y --+ Z is some mapping (algorithm). E(L, I, <5) is called the
intrinsic error of recovery. An algorithm So is called an optimal one if

sup IILx - Syll = E(L, I, 6).
XE W

IIlx-YII";o
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If So is an optimal algorithm, Xo E W, and

sup II Lx - So yll = E(L, I, 0),
IllxQ -- I'll" 6
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then X o is called a worst element.
The investigations of the problem (1) were initiated in [1] for the case

dim Y < 00. The case dim Y = OCJ was worked out in [2J (see also [3]). In
this paper we consider some problems of optimal recovery of analytic
functions from the Hardy space Hp and the Bergman space Ap , 1~ P~ 00.

We also consider the same problems for harmonic functions from similar
classes hp and ap ' Some results related to H xo can be found in [4-7].

In Section 1 we prove some general theorems on optimal recovery from
inaccurate data, which closely relate to results obtained in [2,3,8,9]. In
Section 2 we apply these theorems to finding optimal recovery algorithms
for functions from H p , A p , hp , and a2 in some point of the unit disc of (,
when the disposed data is the inaccurate value of these functions in some
other point. In particular we obtain some generalizations of Schwartz's
Lemma. In the last section we find optimal algorithms of recovery of /,(0)
from inaccurate data f(-h) and f(h), hE(O, 1) in H p spaces. In H av we
also find the optimal value of h for which the intrinsic error is minimal.

1. SOME GENERAL THEOREMS ON RECOVERY FROM INACCURATE DATA

Now our aim is proving the sufficiency of some conditions for the So to
be an optimal algorithm and X o to be a worst element. These conditions
were originally found by Micchelli and Rivlin [2]. Though it is closely
connected with Micchelli and Rivlin's result the theorem we need is slightly
different.

THEOREM 1. Let X oE W, -XoE W, L( -xo) = -L(xo), liIxol1 ~ <5,
III( -xo)1I ~ 0, and

sup IILx-Soyll = IILxo!l.
XE f-V

Illx- YII" 6

Then

(i) So is an optimal algorithm,

(ii) X o is a worst element,

(iii) the intrinsic error is E(L, I, 0) = IILxoli.
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Proof It follows from (1) that

E(L,I,b)~ sup IILx-Soyll=IILxoll.
'(E fl'

II/x-yll<;;b

On the other hand, for any algorithm S we have

IILxo - S(O)II + IIL( -xo) - S(O)II ;?; 2 jlLxoll

and therefore

(2)

sup IILx - Syll ;?; max {IILxo- S(O)II, IIL( -xo) - S(O)11 } ;?; IILxoll·
XE I-V

II/x-yll<;;b

Thus E(L, I, b) = IILxoll and So is an optimal algorithm. Now suppose that
X o is not a worst element, i.e.,

sup IILxo-Soyll < sup = IILxoll.
II/xo - .I'll <;; b II/x,,"-Eyf<;; b

Then

which contradicts (2). I

COROLLARY!. Let XoEW, -XoEW, L(-xo)=-Lxo, IIIxoll~b,

III( -xo)11 ~ b, let So be a linear operator, and let

sup IILx-Solxll = IILxoll-b IISoll.
XE u'"

Then

(i) So is an optimal algorithm,

(ii) X o is a worst element,

(iii) the intrinsic error is E(L, I, b) = SUPXE W.II/xil 0 IILxl1 = IILxoll·

Proof Note that

sup IILx-Soyll= sup IILx-Solx+So(Ix-y)11
XE W XE W

Il/x-yll <;;b Il/x-yll <;;b

~ sup II Lx - So Ix II + 1> II So II = IILxoli.
XE ~v
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Since lilxoll ~<5 we have

sup IIL.-II ~ IILxol1 ~ sup IILx-Soy!1 ~ sup IILxll.
x E ~'V x E U'" X E ~,v

Illxll <; 6 Illx - -"II <; 6 :1[<11 <; 6

Thus

sup IILx-Soyll=IILxol! = "up IIL'CII.
XE I,V XE JV

II Ix - y II ,;;; 6 II Ix I[ <; 6
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Now the corollary follows from Theorem 1. I
Let Q be a subset of en and fl be a nonnegative measure on Q. Denote

by Lp(Q, fl) the Lebesgue space of complex- (or real-) valued functions
with the usual norm

Ilfll p = (L If(zW dfl(Z)) IP,

Ilfll:c = ess sup If(z)l·
ZED

1~p< x,

p = CIJ.

Let X p be some linear subspace of Lp(Q, fl) and BXp =
{f E Xp : Itfll p ~ I}. Consider the problem (1) for X = Xp , W = BXp and
z= ([(iR).

The following theorem is a generalization of the appropriate results from
[8,9] obtained for the case <5 = O.

THEOREM 2. Let gEXp , Ilgllp#O, go=g/llgl!p' Also let L be a
functional on Xp , L( - go) = -Lgo, IIIgol1 ~ <5, III(go)11 ~ <5, and So a linear
functional. Let SoIgo=<5IISoll andfor every fEBXp let

{

rJ. t g(z) Ig(z)I P
-

2 f(z)dfl(Z), 1~p<x
Lf- SoIf = (3 )

t g(z) Icp(z)1 fez) dfl(Z), p = CIJ,

where rJ. > 0, cp E L1(Q, fl) and if p = oCIJ then Ig(z)1 = 1 almost everywhere on
Q l,,'ith respect to measure fl. Then

(i) So is an optimal algorithm,

(ii) go is a worst element,

(iii) the intrinsic error is

ElL 1l5) = ILfl = L = {IY. jlgll ~-l + b IISol!,
\ , ,sup go II I . S I

. JEBKp cpll+blloll,
IWII <; 6
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Proof For every fEBXp from (3) and the Holder inequality we have

l~p<oo,

p= 00.

On the other hand we obtain

Hence

sup ILf - SoIfI = Lgo- b IISoll·
f EBXp

Now the theorem follows from Corollary 1. I
Let I; be the space em supplied with the norm

and by (a, b) denote the Hermitian inner product

m

(a,b)=I a/i).
}~ I

Let a =f. 0, a* E Bl; and

l~p<oo

p= 00.

1~q< 00,

q= 00,

(a, a*)= Ilallq"

It is easy to see that

and for q' = 00

1 1
-+-=1q q' .

1~q' < 00,



SOME PROBLEMS OF OPTIMAL RECOVERY 211

p = 00.

l::::;p<oo

COROLLARY 2. Let l:BXp~I:, Soy=(y,a), aEC m
• gEXp, Ilgllp#O,

go=g/llgllp, L be a functional, L(-go)= -Lgo, and Ill(-go)llq::::;b.
Suppose that for every f E BXp the equality (3) holds and Igo= ba* if a,.p. 0,
or Illgoll q::::; b if a = O. Then

(i) So is an optimal algorithm,

(ii) go is a worst element,

(iii) the intrinsic error is

_ _ _{Cl.ilgl!~-I+bllallq"
E(L, l, b) - sup ILfl- Lgo- II II "II II

f E BXp q> ) + u a q"

II/fll q " b

2. OPTIMAL RECOVERY OF ANALYTIC AND HARMONIC FUNCTIONS

Let D = {z E C : Izi < 1} and H p be the Hardy space, i.e., the space of
functions which are analytic in D and for which

(
1 f27[ \ l:p

Ilfll H = sup - If(reieW dB I < ::N,
p O<r< 1 2n 0 /

Ilfll H x = sup If(z)1 < 00.
OE D

l::::;p<<N, (4)

It is well known that the functions from H p have boundary values almost
everywhere and therefore H p can be considered as a subspace of Lp(Q, f.I)
for Q = {z E C : Izi = I} and dJ1.(e ie )= (1/2n) dB.

Recall that the Bergman space A p is the space of analytic functions which
satisfy the inequality

l::::;p<<N, (5)

where a(z) is the Lebesgue measure on D (for p = 00 A oc = H 00)' Thus the
space Ap is the subspace of Lp(D, J1.) for d,u(z) = (lin) da(z).

Denote by hp and ap the spaces of harmonic functions in D which satisfy
(4) and (5), respectively.

Consider the problem (1) when Xis one of the spaces Hp , A p , hp , or ap ,

W=BX, Lf=f(;), If=f(z)), ; and ZI are distinct points in D. The
relative intrinsic error will be denoted by E(;, z l' b, X).

Put

I
; -z) I

p= -1- J='
-zl"'l

. Z- Z 1
W(z) = e"P --_-,

1-Z12
(6)
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0~<5~<51'

<5 1 <0:5<<5 2 ,

where qJ is determined from the condition W(O = p,

(
1- p ) lip ( 1 _ p2 ) I!p

<5 1 = 2(1-lz I1 2 ' <5 2= l-lz l1 2 '

{

I,

h(z) = (W(z) + a)j(1 + aW(z)),

W(z),

where a E [0, 1] and satisfies the equation

a<5 2 . <5
h(zd(I+2ap+a2)llp ,

(7 )

(The existence of a solution follows from the continuity of the function
from the left hand side of (7).) Put a = 0 for <5 ~ <5 2 ,

PROPOSITION 1. Let X = Hp • Then for every 1~ p < oc, and <5 ~ 0

(i)

p(l_I~IL)'P-L):P

0( = h(O(l + ap )2(P-I)/p'

S ,_ h(zl)(1-p2) (1-~ZI)2!P
oJ-h(~)(1+ap)2(P-I) l_I~12 Y

is an optimal algorithm,

(ii)

(
l_I~12 )l/P (W(z)+a)(1 +aW(z))(2- p)!p

go(z) =
1+2ap+a2

h(z)(I-~z)2IP

is a worst function,

(iii) the intrinsic error is

(p + a)(1 + ap)(2- p)/p
E(~, z I' <5, Hp) = h(()( 1 + 2ap _ Z2)IIP (1-1~12)I/p'

Proof Put

(W(z) + a)(l + aW(z))(2- pl/p
g(z) = - 2 1 '

h(z)(l- ~z) IP

By the residue theorem we have for every f E H p

0( ~ f2" g(e iO ) Ig(e iOW- 2f(e iO ) de
2n 0

1 f (1+aW(z))2(p-I)/ph(z)
=0(-. _ , f(z)dz

2m Izl~1 W(z)(z-O(1-(z)(p-2),p .

= f(O - Sof(zd·

(8)
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=_1 f (1 +aW(z))(W((z)+a) d::

2ni 1=1~1 W(z)(l-b)(z-~)

1+ 2ap + a 2

1_1;1 2 .

It follows from (7) that for 0~b<<52 Igo(zdl =<5 and for 6;;::<52 Igo(zdl =
<52~<5, Soy=O. Since So go(zd;;:: 0, we have Sogo(.:d=6 IISol1 for every
<5 ;;:: O. Now the proposition follows from Theorem 2. I

Note that in virtue of Theorem 2 the following generalization of the
Schwartz Lemma can be obtained from Proposition 1:

(Izl +a)(l +a Izl)(2- P IP

sup 11(::)1 =
fEBHr

If(O)1 ~b

o~6~ (l- IZ I)l/P
"" "" 2 '

(1 + a Izl fp

(
1 1-ljllP----=----=- ~-'~11_1-12'lP2 / "" v "" \ L.,',

(1-1::1 2
)lP,

b;;:: (1 - Izl 2 )IP.

(9)

Here a is defined by (7) for z 1 = O.
Now consider the same problem for X = A p • Put

where a E [0, 1] and satisfies the equations
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apZ/P( (p/2 - 1)( 1- aZ) bZ+ b + bZf/p (1 _ pZ )z/p

(
((P/2 -1)(1- aZ)(l + 2ap + aZ)(l _ pZ) pZb4)

+ 1-2(1- pZf b2+ (1- p2)2 b4)I/p

1
X , =<5 (10)

(1-l z II)2/P

for 0 ~ <5 < <5 1 and

(1 - b2)2/p (1 _ p2 )2/p
----~----=----.:..-~-;-~c__--__=_=c_ = <5
(1 - 2( 1- p2 f b2+ (1 - p2)Z b4)I/p (1 - Iz 11 2 )2/p

for <5 1~ <5 < <5 2 , (The solution of the last equation may be given in direct
form and the existence of solution (10) will be shown below.) Put a = 0 for
<5 > <5 2 , Let

{

(P/2 -1)(1 - a2)(1- pW(z)) + (l + aW(z))(2 + ap - pW(z)),

( ) 0~<5<<51'
cP Z =

(1 + aW(z))(2 + p - apW(z)),

<5><5 1,

{

W(z) + a (cp(Z))2/p

_ l+aW(z) (l-ez)4/p'
g(z) - (cp(Z))2/p

(1- ez)4/p'

PROPOSITION 2. Let X=A p. Then for every 1~p< 00 and <5>0

(i)

,_ 21_ 22 (l- ez l )4/
p

(CP(Zd)(P-Z)/P I

So}-b( p) l_I~12 cp(~) )

is an optional algorithm,

(ii) go=g/llgllap is a worst function,

(iii) the intrinsic error is

\

p((p/2)(1- p2) + 1)I/P
(1_1~12)2/P ,

_ a+ p ( l-lz 11
2

)2/P (cp(O)2/P

E(~'ZAAp)=1 Ob: (1-I(I')(l~p') <plz') ,

(l_I~IZ)2/P'

<5 = 0,
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Proof Note that the functions

(p/2 -1 )(1- a2)(1- ,ow) + (1 + aw)(2 + ap - pw)

and

(1 +aw)(2a + ,0 - apw),
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as the functions of lV, have real zeros which are outside the interval
( -1, 1). Therefore <p(z) is zero free in D. Let 0:::;; b < b I' For 1 E H ce denote

1 j' (1 +aW(z»2 (<p(Z»(P-2)iP
JI=-. • f(z)dz.

2m Izl~1 W(z)(W(.z)-p)(1-~Z)~IP-2)/p

Since W(z)-p=eiq>(z-0(1-lzI12/(1-zlz)(1-zl~) we obtain by the
residue theorem

. p(1-lz 12H1_1~12)2(P-2)'P
"I' 1 . JI"-/(r)-S f(7 )

e (1+apf(1-zl~)(<P(~»(p-2)iP J -., 0. ~I'

On the other hand, in view of the equality W( e i8
) = W-! (e i8

), we obtain by
Stockes' formula

1 f (w(z)+a)2 (1+ctW(Z»L(<p(Z»IP-2 i
/
P

H=- f(z)dz
J 2ni Izl=1 1+aW(z) (_pW(z»)(1_()L(p-2 iip

1 ( W(z) + a )1'/2+ 1 (1 + W(Z»2 ( W(z) + a )pIL-l

=2nit~1 1+aW(z) (l-pW(z» l+aW(z)

(<p(Z))(p-2)/p
x I(z) dz

(1_(Z)2(p-2)/p

=e-iq> (1-ZI~~2 ~ f ("W(Z)+ay'2
l-lzll- n D 1+aW(z)/

x ~ (w(z)+a )1'/2-1
(1- sZ)2 l+aW(z)

(<p(z) )(1' - 2)/1'
X _ I(z) da(z)

(1- ~Z)2(P-2Vp .

. (l-zc)21 . -
= e- UP 1 -? - j g(z) Ig(zW- 2I(z) da(z).

l-lzll- n D

Thus for every 1 E H 00 we have

p(I_I~12)2(p-2)!p 1 - -2 ,

(l +a )2 ( C) )(1'-2)11' :; f g(z) Ig(zW I(z) da(z) =1(0 - Sof(z;l.
p <pc, D (11)
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As functions from H"" are dense in A p for every 1,,;; p < 00, the equality
(11) holds for every function from A p . It is easily seen that So g(z I) ~ 0.
Therefore it follows from Theorem 2 that if a E [0, 1J satisfies the condition
Ig(z[)IjllgIIA =b, then So is an optimal algorithm. For f=g, from (11) we

r
have

p(I_I~12)2{P-2),P

(1 +ap)2 (cp(O)(p-2)!p Ilgll~r

(p + a)(cp(~W/P (1 -p2)2 acp(zIl
= (1 +ap)(l-1~12)4;P- 1+ap (l_1~12)4/p (cp(O)(p-2)fp·

Hence

We find by direct calculation that

1
Ilgll ~r = b4p2(1_1~12)2

X ((~-1) (l-a2)(1- p2)(1 + 2ap +a2) p2b4

+ 1 - 2( 1 - p2f b2+ (1 _ p2)2 b4)'

Since II gil A > ° for every a E [0, 1J, the function in the left-hand side
r

of (10) is continuous as a function of a (aE [0, IJ), and therefore the
equation (10) has a solution for every bE [0, bll We have

Ig(zdl =a Icp(Z~Wf~ =a ((p/2-1)(I-a
2
)+2+ap)2/P

11-~zI14IP 11-~zI14/p

a((p/2 -1 )(1- a2)+ 1+ b- 1 )2/p (1- p2)2/p

(1_1~12)2/P (1-lzI1 2)2/p

and so the equation (10) means that Ig(ZI)I/llgIIA =b.
p

The case b E [b I , b2J can be considered in the same way if we set

Jf=_1 f
2ni 1=1 = I

=2~i t=l

(W(z) + a)2 (cp(z ))(p - 2)/p
_ ? . f(z) dz

W(z)(W(z)-p)(I-~z)2(P--)/P

(1 + aW(z))2 (cp(Z)){P-2)/p
_ f(z) dz.

I-pW(z)(I-~z)2{P-2)/P
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Let now b~b2' Then a=O, g(Z)=p2/p(1_[z)-4 p
, and

1 I' - p2\P-I)P • f(z) d(J(z)
- I g(z) Ig(z)I P -

2 ((z) d(J(z) = I
n J D • IT J D (1 _ ~Z)2 (1_ [z )21P - 2 liP

(Here we use the fact that the Bergman kernel (1 - ~;;) -2 is the repro­
ducing kernel on A p .) Thus

(l_1;:1 2 )2IP-2)/p 1 . _
~U'-I)P - j g(z) Ig(z)IP-2 f(z)du(zl=f(O-Sof(zd· (12)

p - n D

Now let us verify that Ig(zJlI/llgIIAp~b. Substituting f=g in (121 we
obtain

which yields

The proposition is proved. I
Now we consider the same problem for X = hp , P> 1. Put

. (1/2n) n" P(z I' ei8
)(P(~, ei8

) - ;.P(z I' ei8
) )(q) dB

iX(A)= 11P(';")-AP(Zl")II:- 1 '

where P(,;,z)=1-1~12/ll-(zI2 is the Poisson kerneL l/p+l/q=l,
(X)lq) = Ixlq-I sign x, and

Let us show that for every °~ b ~ b1 the equation

iX(A) = b ( 13)

(14)

has a solution AE[O,(l+p)/(l-p)]. For z=eiB and (=W(z)=
ei"'(z--zd/(l-;;lZ) we have

P((, z) _ P ~ _ 1 - p2 :< 1 - p
P( ~ ) - (p, \J - 11 -1 2 '"" -1-

""I' Z - Ps - P
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(p and qJ are the same as in (6». Thus for every Z = eiO,

l+p
P(~, z)--- P(Zj, z):::;O.

I-p

Therefore

a(~)<o.
I-p

Since a(A) is continuous for AE[O,(l+p)/(I-p)] and a(0)=iJ 1, the
equation (13) has a solution in this interval for every 0:::; iJ :::; iJ j. We denote
this solution Cp(~, ZI' iJ). For iJ > iJ l we put Cp(~, Z[, iJ) = O.

PROPOSITION 3. For X=hp , p> 1,

(i) SoY= Cp(~, ZI, iJ)y is an optimal algorithm,

(ii)

(0 = (1/271:) n" P( (, eiO)(p(~, eiO ) - Cp(~, ZI> iJ) P(z I' eiO ))(q) dB
U

o IIP(~, .)- Cp(~, ZI' iJ) P(Zj, ')II~-j

is a worst function,

(iii) the intrinsic error is

Proof It is known (see [10]) that every function from hp' p > 1, has
boundary values almost everywhere. It is also known that boundary values
reconstruct this function by Poisson transformation. So for every u E Bhp ,

p> 1, we have by the Holder inequality

lu(~)- Cp(~, ZI' iJ) u(zdl

1

1 j" 2" B "0 "0 I= 271: 0 (P(~,e' -Cp(~,z[,iJ)P(zl>e' »u(e' )dB

:::; IIP(~,·) - Cp(~, ZI' iJ) P(ZI,' )ll q •

On the other hand, the function
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and therefore (see [10]) uoEBhp and has almost everywhere boundary
values which coincide with f(e). Thus we obtain that

Hence

sup lu(O - Cp(~, ZI, b) u(zdl = uo(O - Cp(~, ZI, 6) uo(zd· (15)
U E Bhp

Let 0:::;; 6 :::;; 15 [. It follows from the definition of Cp(~, Z l' b) that uo(z d = 5.
Since Cp(~, Z1> c5)~O, we have from (15) that uo(O~O and

sup lu(~) - Cp(~, ZI' b) u(zdl = IUo(~)I- bCp(¢, ZI, b).
UEBhp

For b > 15 1 the same equality holds because Cp(~, Z l' 0) = O. Now the
proposition follows from Corollary 1. I

We can easily find C:c(¢, ZI, 0). In this case q= 1 and

1 I2
""e "8 -ea(A)=- P(z[,e' )sign(P(~,e! )-)'P(ZI,e' ))de.

2n 0

In view of (14) the substitution Z= (e-i'l'( +zl)/(1 +Zle-i",() yields

1 12
"a(A) = - sign(P(p, eie ) - A) de

2n 0

1 I" ( 1- p2 \=- sign -A de
n 0 1 - 2p cos e+ p2 )

1,

-1,

I-p
).:::;;--,

1+p

1-P~A~1+p
1+p'" "'1-p'

A~~+P.
I-p

Hence for 0:::;; 15 < 1 the solution of (13) is

" 1- p2
C XJ(';, zl' b) = 1 + 2p sin(nb/2) + p2'

If 15 = 1, every AE [0, 1p/( 1 - p)] is a solution of (13).
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For °~ b < 1 and z = eil:l we have

sign(P(~, z) - CXJ(~' Zj, D) P(Zj, z)) = sign C1~ ;:;zW - C;:x>(~, Zj, D))

=sign(Re W(z)+sin~-D)

. W(z)+tan(nD/4)
= sign Re .

1+ W(z) tan(nD/4)

4 W(z)+tan(nD/4)
= - Re arctan .

n 1+W(z)tan(nD/4)

In the case p = 00, °~ 15 < 1, we obtain

(
Y) 4 W(O + tan(nD/4)

Uo (, = - Re arctan .
n 1+ W(O tan(nD/4)

Thus the next corollary follows from Proposition 3.

COROLLARY 3. For X = h;:x>

(i)

SoY=

1+ 2p sin(nb/2) + p2 y,

1-p
c--y·

1+ P - ,

0,

O~b < 1,

15 = 1, c E [0, 1],

15> 1,

is an optimal algorithm. (In the case b = 1, c is an arbitrary value in [0, 1].)

(ii)

4 W(z)+A
uo(z)=-Rearctan 1 ()'

n +AW z

is a worst function,

(iii) the intrinsic error is

h {
tan(nD/4), °~ b < 1,

were A =
1, b~ 1,

y 4 p+A
£(1;, Zj, 15, hx) = uo(O = - arctan --.

n 1+Ap



SOME PROBLEMS OF OPTIMAL RECOVERY 221

The solution of the equation (13) may also be obtained in direct form for
p = 2. Nevertheless, we prove a more general result for the Hilbert space.

Let X be a complex (or real) Hilbert space. Consider the problem (l) in
the case W=BX, Y=Z=iC(IR), Lx=(x,x I ), !x=(x,Xl ). Xl' X1EX The
intrinsic error will be denoted by E(Xl, Xl' 0, X).

PROPOSITION 4. Let x I and Xl be linear independent elements from the
Hilbert space X. Put

Then

(i)

where

C;
A'=l---­

l(x l , x2 )1

is an optimal algorithm,

(ii)

Xo=

is a worst element,

(iii) the intrinsic error is

C;"
1--­

Ilxlf

Proof We have

_II - (Xl' Xl) _ Iii
- XI A Ilxlf -'\1

Ilxlf Ilxlf -I(x l , X1W

Ilx l ll l
-c;2

640 '70.2-7
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Moreover
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Thus Ilxoll=l and sUPIIXII",[I(x,xd-So(X,X2)1=(xo,xtl-So(xo,xd.
Since

and

we obtain So(.xo, x 2 ) = b IISoll. To finish the proof of the proposition we
need only apply Corollary 1. I

The problems of optimal recovery in Hilbert spaces from inaccurate data
were investigated in [11]. (See also [2] for a more general situation.)

Let X be a Hilbert spaced of functions f: Q ~ qlR) with the reproducing
kernel K: Q x Q ~ qlR), i.e.,

f(z) = (f(.), K(·, z))

for every f E X and z E Q. Consider the problem (l) for W = EX, Lf = f( ~),

If = f(z d. If K( " ~) and K( " z tl are linearly independent (i.e., the class EX
distinguishes the points ~ and z [), then from Proposition 4 we get
Corollary 4.

COROLLARY 4. Put

. {~ IK(Z[,~)I}
I:=mm u, JK(~, 0 .

Then

(i)

where

K(~,~) K(z[, ztl-IK(z[, ~)I

K(z[, xtl-1:2
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is an optimal algorithm,

(ii)

is a worst function, and

(iii) the in trinsic error is

223

We list some examples of Hilbert spaces with reproducing kernels:

(f, g \ =~ f27< +(e i9 ) o-(e i9 ) de., • 2 J b . .
7T 0

l' -
(f, g)=; Lf(z) g(z)dl1(z),

1 '
(u,v)=-j u(z)v(z)dl1(z).

11: D

Note that we can obtain the generalization of Schwarz's Lemma in the
same way as (9):

sup =E(~, z" b, Xl,
[eEX

I[(=lll < 6

where E(~, z" b, X) can be found from the corresponding proposition for
X=Hp , A p , hp , and a2 •

Put

where X = H p , A p , hp , or a2 and go(z) is a worst function for the
appropriate recovery problem. Consider the information operator
if = f ID(~, z" J, X) instead of If = f( zd and let Y be the space of functions
which are continuous in D(~, z" 15, X) with the norm

Ilyll = sup 1)'(z)l.
ze D(~, Zl, J. Xl
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It follows from Corollary 1 that the optimal algorithm, the worst function,
and the intrinsic error will stay the same. Thus the additional information
(with the same inaccuracy) about the behaviour of the function f in
D(~, z l' 15, X) will not decrease the intrinsic error. In other words, the point
z 1 forms some "shadow" set in which any additional information is useless.

3. OPTIMAL RECOVERY OF THE DERIVATIVE FROM INACCURATE DATA

We turn now to the problem (1) for X=Hp , Z=C, Y=l~, Lf=f'(O),
If = (f( - h), f(h)), hE (0, 1). The intrinsic 'error will be denoted by
E~(h, 15, H p ).

There is the well-known algorithm

1'(0) ~f(h) - f( -h)
2h

which is not optimal even in the case b=O (see [12]). It was shown in [2]
that

1'( '7) ~ (1 _ h4 ) f(h) - f( -h)
~ 2h

is an optimal algorithm for 15 = 0 and p = 00. It follows from [8] that this
algorithm is optimal for b = 0 and every 1~ P~ 00. Moreover it is also
optimal for b = 0 and X = h oo (see [9]).

Now we consider the case when the value of functions in the points - h
and h are known with an error ~15 in the norm of l~, that is, we know Yl
and Y2 such that

Put

If( -h) - Y1W + If(h) - Y2I Q~ 15 Q
,

max{lf(-h)-Y11, If(h)-Y2I}~15,

1~ q < 00,

q= 00.

I> = {l/P, l~p<oo,
p 0, p= 00,
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Let a E [h, 1J be a solution of the equation

h(a2- h2)( 1_ a2h2)2ep-l
_---'-__-'...2.__---..:---'-_~= 02 - £q

rx(h)(1-h2)'p(1-2a2h2+a4)er '

225

(16 )

where °~ b ~ b2 . (The existence of the solution follows from the continuity
of the function in the left hand side of this equation). Put a = h for [; > b2 .

PROPOSITION 5. For every b ~ 0, 1~ p, and q ~ oX)

(i)

is an optimal algorithm,

(ii)

is a worst !unctior,I,

(iii) the intrinsic error is

Proof Put

For ! = g we have from these equations
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Note that if p = 00, Ig(e i8 )1 == 1. Now to use Corollary 2 we must prove that

Igo=fJa*=~ (-1, 1)
2eq

if O:(fJ<fJ2 and IIIgoll i 2:(fJ if fJ~fJ2. Let O:(fJ<fJ2. Since
go( -h) = -go(h) it is sufficient to prove the equation

which coincides with (16). If fJ~fJ2' go(z)=z and IIIgollt2=h2eq=fJ2:(fJ.
q

This completes the proof of the proposition. I
Note that So y == 0 for D~ h2eq. If D< 2eq we can consider the problem of

finding such a value ho that

The value ho is called an optimal value of h. We give the solution of this
problem for p = 00.

PROPOSITION 6. For p = 00, 1:( q:( 00, and 0:( fJ < 2eq the optimal value
ho satisfies the equation

(17)

The equality

lim E~(h, D, H 00) = h~
hE (0.1)

holds. The optimal value ho can also be found from the equality

ho= jk sn(Kj3, k),

where k is determined by the equation

or

K' A'=_.
K 3A'

(18)

(19)

here K, A denote the complete elliptic integrals of the first kind with respec-
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tive moduli k, 2 = (F4 -eq and K', A' denote the ones with complementary
moduli.

Proof From Proposition 5 we have

o~ b < 1l2eq

() ;:?: h2"q,

where a E [h, 1J and is determined by the equation

(20)

Extracting a 2 from this equation and minimizing it as a function of
hE (0, 1) we obtain tha the minimum ho is unique and satisfies the equation
(17). Taking a derivative from (20), we have

a
2

- h
2

h2 1 - a
2

2 'h 1 - h
4

_ 0
-:----:;-2:-;;:' - 2 2 2 2 + aa 7 2 2 - .1- a h~ (1 - a h ) (1 - a-h )

Thus if ho is minimum then g~(ho)= 0, where

(21)

Now it is sufficient to find a function go(z) like (21) such that for some
hoE (0, 1), go(ho)= 152 -eq and g~(ho)= O. It follows from Lemma 2.2 of [7J
that this function is a Blaschke product of order 3 with minimal norm

where k is determined by the conditions Igo( -fi)1 = Igo(fi)1 = ,:52- eQ
•

From [13J this function can be written in the form

_ k sn 2(2K/3, k) - Z2

go(z) = z 1_ k sn 2(2Kj3, k) z2"

This function can be rewritten by using the first fundamental transforma­
tion of degree 3 (see [14])

z = fi sn(u, k),

where 2=c5 24- e
q and k satisfies (18), (19). If we put ho=Jksn(K/3,k)

then go(ho) = 82 -eq and g~(ho)= O. This completes the proof of the
proposition. I
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It is easily shown from (17) that

and consequently

min E~(h, 6, H-xo) = 4 -(l +eq)/36 2/3 + 0(6 2 ).

hE (0. 1)
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