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INTRODUCTION

Let X be a linear space, let Y and Z be normed spaces, and let W< X.
Consider the problem of optimal recovery of the operator L: W — Z using
the values of the information operator I:= W — Y in the case where those
values are inaccurate ones. More precisely, let us consider the extremal
problem

E(L,L,§)=inf sup | Lx—Sy|, (1

xe W
lix—yl<é

where S:Y— Z is some mapping (algorithm). E(L, I, 6) is called the
intrinsic error of recovery. An algorithm S is called an optimal one if
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if S, is an optimal algorithm, x,€ W, and

sup ”L'x—SO,VH =E(L’ I> 6);

lixo — il <9

then x; is called a worst element.

The investigations of the problem (1) were initiated in [ 1] for the case
dim ¥ < oc. The case dim Y= oo was worked out in [2] (see also [37]). In
this paper we consider some problems of optimal recovery of analytic
functions from the Hardy space H, and the Bergman space 4,, 1 <p< 0.
We also consider the same problems for harmonic functions from similar
classes #, and a,. Some results related to H ., can be found in [4-7].

In Section 1 we prove some general theorems on optimal recovery from
inaccurate data, which closely relate to results obtained in [2,3,8,9]. In
Section 2 we apply these theorems to finding optimal recovery algorithms
for functions from H,, A,, h,, and a, in some point of the unit disc of C,
when the disposed data is the inaccurate value of these functions in some
other point. In particular we obtain some generalizations of Schwartz’s
Lemma. In the last section we find optimal algorithms of recovery of /'(G}
from inaccurate data f(—h) and f(h), (0, 1) in H, spaces. In H, we
also find the optimal value of / for which the intrinsic error is minimsl

1. SoME GENERAL THEOREMS ON RECOVERY FROM INACCURATE DaTta

Now our aim is proving the sufficiency of some conditions for the S, o
be an optimal algorithm and x, to be a worst element. These conditions
were originally found by Micchelli and Rivlin [2]. Though it is closely
connected with Micchelli and Rivlin’s result the theorem we need is slightly
different.

THEOREM 1. Let xqeW, —xpeW, L{—x3)=—L{xs} [lixe] <94,
1H(—xo)ll <0, and

sup [ Lx — So ¥l = [[Lxol.
I|Ix{-ey[f|p$ S
Then

(i) S, is an optimal algorithm,
(i} xq is a worst element,
(iii) the intrinsic error is E(L, I, 6)= | Lx,l.
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Proof. 1t follows from (1} that

E(L, Lo)< sup  ||Lx—So pl = IILxol.

xe W
lHx—yl<d

On the other hand, for any algorithm S we have
Il Lxo— SO + I L(—x0) — S(O) 22 || Lxo]l (2)
and therefore

sup || Lx— Syl > max{liLxo — S(O)l, I L{~x0) — S(0) } = | Lxo|.

xe W
ffx—vli<d

Thus E(L, I, )= ||Lx,|| and S, is an optimal algorithm. Now suppose that
Xo is not a worst element, ie.,

sup  [[Lxo—Soyll < sup =|Lxo.

l{xp—yli <6 xeW
lix—yli<é

Then

| Lxo — So(O)| < [[Lxoll, 1L{—x0) — So(O) < [[Lxoll,
which contradicts (2). |

COROLLARY 1. Let x,eW, —xqeW, L{—x,)= —Lxy, [Ixell <3,
1 I{ —xo)|l <6, let Sy be a linear operator, and let

sup || Lx — So x| = | Lxol — & [[Sol.-

xeWw
Then
(i) S, is an optimal algorithm,
(i) x, is a worst element,

(iii) the intrinsic error is E(L, I, ) =5sup <5 ILX] = | Lxo]-

Proof. Note that

sup  |Lx—=Soyll= sup ||Lx—Solx+ So(Ix — y)|

xeW xe W
Hx—vi<o Hx—y]<6

Ssup [|Lx — SoIx|| + 6 |Soll = | Lxo]l.

xeW
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Since |{{x,|| < we have

sup [[Lx| > |[Lxol =z sup [Lx—Soyl= sup [Lx].

xe W xe W Xe W
x|l <o lx—vi<d exll <o

Thus

sup  |[Lx—So yll =l Lxo| = sup [Lx]|.

xe W xe W
Mx—||<d [ix] <6
Now the corollary follows from Theorem 1. §

Let £2 be a subset of C” and p be a nonnegative measure on 2. Denote
by L,(€, u) the Lebesgue space of complex- (or real-) valued functions
with the usual norm

ip

||fH,;=(J' If(Z)I"du(z)> , I<p<m,
o
Ifll < =ess sup | f(z)].

e

Let X, be some linear subspace of L,{Q,u) and BX, =
{feX,:|fl,<1}. Consider the problem (1) for X=X,, W=BX, and
Z=C(R).

The following theorem is a generalization of the appropriate results from
[8, 9] obtained for the case 6 =0.

THEOREM 2. Let geX,, |gll,#0, g=g/ligh, Also let L be «
Sunctional on X,, L(—go)= —Lgo, [1goll <0, |H(go)ll <90, and S, a linear
Sunctional. Let Solg, =90 ||Sol and for every fe BX, let

o | 2@) g7 fl2)dulz),  1<p<ce
L~ S,lf =

o
(o)
Rl

| &) o) /() duz), p=mm.

where a >0, o e L (2, p) and if p= 0 then |g{z)| = 1 almost everywhere on
2 with respect to measure 1. Then
(1) S, is an optimal algorithm,
(i1} g is a worst element,
(iii) rhe intrinsic error is
o [lglh="+3 Sl
ol + 6 11Salls 14

N
S
A
&

E(L,1,8)= sup |Lf] =Lgo={
fe BX,
7l <o

I
8
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Proof. For every feBX, from (3) and the Holder inequality we have

alglz™!,  1<p<omo,

1Lf-solf|<{ <
HQDH[: p—CO

On the other hand we obtain

«light=!,  1<p<w

Lgo—0 Sl =Lgo—Solg0={. _
I|(p”1’ P=90.

Hence

sup |Lf — Solf| = Lgo— 5 ||Soll.

feBXp

Now the theorem follows from Corollary 1. ||

Let [7 be the space C™ supplied with the norm

m 1/4
<Z Iajlq) ) 1< g< oo,
“a”q:”(al,..., am)”q—_— Jj=1

max Iaj]’ q= 0,
I1<j<m

and by (a, b) denote the Hermitian inner product
(a,b)=Y a;b,
j=1
Let a#0, a*eBl;” and
1 1
(a,a*)=|al,, a+—,=1-

It is easy to see that

alal|??
?k—_—_j__j—T’ 1<q’<w,
T el !
and for ¢'=
O» j:/:jO»
a}": a4, j_J
H = JO»
Iajol

where j, such that |a;| =max, ;. |a,.
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COROLLARY 2. Let I: BX,— 17, Soy=(y,a), aeC" geX,, |g|,#0,
go=8/llgl,» L be a functional, L(—go)= —Lgo. and |I(—go)ll,<9.
Suppose that for every f e BX, the equality (3} holds and ig,= éa* if a #0,
or |Igoll, <6 if a=0. Then

(i) Sq is an optimal algorithm,

(ii} gy is a worst element,
(iil) the intrinsic error is

v — 1 o '
allgliy™ " + 0 llal,,

1
B o= sup 1=1go={] 17 0] p=c.

feBX)y
fig<d

2. OPTIMAL RECOVERY OF ANALYTIC AND HARMONIC FUNCTIONS

Let D={zeC:|z|<1} and H, be the Hardy space, ie., the space of
functions which are analytic in D and for which

2n 1'p

1 2 .
o= s (52 [ 1feoirae) “<m 1<p<em @

O<r<l 27 Jo /

11z, =sup |f(z)] < 0.

zeD

It is well known that the functions from H, have boundary values almost
everywhere and therefore H, can be considered as a subspace of L,(£2, u}
for = {zeC:|z|=1} and du(e®)=(1/2x) db.

Recall that the Bergman space A, is the space of analytic functions which
satisfy the inequality

1 \17
ufn,,p=(— o)) <o 1<p<en, (5)
m Vp

where ¢(z) is the Lebesgue measure on D (for p=o0 A, = H_,). Thus the
space 4, is the subspace of L (D, u) for du(z) = (1/r) do(z).

Denote by 4, and a,, the spaces of harmonic functions in D which satisfy
(4) and (5), respectively.

Consider the problem (1) when X is one of the spaces H,, 4,, k,, ot a,,
W=BX, Li=f(&), If =f(z;), ¢ and z, are distinct points in D. The
relative intrinsic error will be denoted by E{¢, z,, 6, X).

Put

—2z; N e ZTE \
P A A P (6)
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where ¢ is determined from the condition W(¢)=p,

1_ 1/p 1_ 2 1/p
51=< P 7> s 52=< P ')) B
21— |zy7 11—z,

1, 0<4<9,,
h(z)=< (W(z)+a)/(1 +aW(z)), 38,<6<0,,
Wz}, 0=20,,

where ae [0, 1] and satisfies the equation
ad, _
h(z,)(1+2ap +a*)'"?

d, 0<6<4,. (7)
(The existence of a solution follows from the continuity of the function
from the left hand side of (7).) Put a=0 for 6 = 4,.

ProOPOSITION 1. Let X=H,. Then for every 1 <p<oc and 6=0

(1)

o oo hz)1=p?) <1—>
FEu@ A +ap)r 0 \1—g2) Y

is an optimal algorithm,

(i)

1— &2 Y2 (W(z 1 W(z))2—#¥e
g0(2)=( il > (W(z)+a)(1+aW(z))

L+2ap+a h(z)(1 — Ez)2"
is a worst function,

(iii) the intrinsic error is

(p+a)l+ ap)‘zfp)/p
WO+ 2ap — %)% (1 — |E]P)VP°

E(é’ zla 65 Hp)=

Proof. Put
(W) +a)l+aW(2) =7 p(l—[gl4) 2
h(Z)(l—-—EZ)L’P > h(E) (1 +ap)- 1P

glz)=

By the residue theorem we have for every fe H,

1 2 = o p—2 0
o fo g(e”) |8(e™)17 7% f(e”) db
1 J‘ (1+aW(Z))2(P*1)/’ph(Z)
= — _
2mi Jjz =1 W(z)(z—f)(l—é’z)(l’—z)r’l’
=S(8) = So f(z1).

fz)dz
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In addition,

2

1 Wi02
T+ aWle™) 1° g

1—Ce®

1 2
P
lelt, =57 |

=LJ (1 +aW(z))(W({(z) +a) i

2ni -1 W)l - E2)(z— &)
1+2ap+a’

R

It follows from (7) that for 0< 6 <8, |go(z,)| =85 and for 6 28, |go(z, )l =
9,<6, Soy=0. Since S;go(z,) =0, we have S,g0(z,) =06 |S;ll for every
62 0. Now the proposition follows from Theorem 2. §

Note that in virtue of Theorem 2 the following generalization of the
Schwartz Lemma can be obtained from Proposition I:

2

(|| + a)(1 +a|z])2-rv»
(1 - |Z|2)l’p (1 +2a Izi +a2)1vp7

0<d <<1‘—IZ|>1’IP,

2
(1+alzl)*” .
sup [f(z)|= ST = {9)
fegelp /) (1—=1z1")"% (1424 |zl +a°)'7
L0 <é
1—1z ilp ; ,
(A\ <s<(1— [0,
2
(1— |19,
8= (1—z| e

Here a is defined by (7) for z; =0.
Now consider the same problem for X = 4,. Put

2+ p)*(1—p)**? [ 1—p® \*F
51=21,p 3_ O\ (] — |z, 227 52:k1_ 2] >
(B3—p7) 7 (1 —|z|%) EA

, <6< dy,
1+ap
b—_"
a
8=9,,
a+p ~

where e e [0, 1] and satisfies the equations
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ap??((p/2—1)(1 ~a®) B>+ b+ b*)"7 (1 —p?)*"
<((P/2—1)(1—az)(1 +2ap +a’)(1 —pz)pzb“)
+ 1 _2(1 _p2)2 b2+ (1 _p2)2 b4)l/p
1 p—
AP

(10)

for 0<d<éd, and
(1= b2 (1—p)r
(1=2(1—p*)? B2+ (1= p*)* )" (1— |z,1)77

o

for 6, <8 <J,. (The solution of the last equation may be given in direct
form and the existence of solution (10) will be shown below.) Put a =0 for
0=94,. Let

((p/2— 1)1 —a*)(1—pW(2)) + (1 +aW(2))(2 +ap — pW(2)),

_ 0<d<o,,
Y=Y (14 aW(2) 2+ p— apW(2)),
\ 020,
(W ta (o) ~
_TRawe a5
$E)=9 (o)
—— 0=296,.

\(1—Ez)%
PROPOSITION 2. Let X=A,. Then for every 1< p<oo and § >0

(i)

1_521 a/p <P(Zl) (p—2)p
S y=b2(1—p2)2( ) ( ) y
° =121/ \ o)
is an optional algorithm,
(i) go=2g/lgll,, is a worst function,
(iii) the intrinsic error is

p(p/2)(1 —p*) +1)'”
Q=g

N T Y e L R A 2T
& =it 4= 0 (i) () © 0<oo

§=0,

1

- 205,
TERRE 026,
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Proof. Note that the functions
(12— 1)L =a®)(1— pw)+ (1 + aw)(2 +ap — ow)
and
(L+awl2a+p—apw),

as the functions of w, have real zeros which are outside the interval
(—1, 1). Therefore ¢(z) is zero free in D. Let 0<d < é,. For fe H_ denote

L _Usabere
27i |zl =1 W(Z)( W(Z)——p)(l _éz)dp—z)v’p
Since W(z)—p=e“(z—&E)Y1— |z, |*/(1 —Z,z)(1 —Z,&) we obrtain by the

residue theorem

o _PUL= |z )1 )22
(1+ap)* (1 =2, E)@(&))F~ 27
On the other hand, in view of the equality W{e)= W (e}, we obtain by
Stockes’ formula
! f ( W(z)+a> (14 aW(2))? (p(z))\ 7 =27
21 =1 \1+aW(@) (= p W1~ 2
_ b J ( W(z)+a)”"2+1 (1+ W(z))? ( W(Z)+a>pfz4
2mi Yz =1 \1 + aW(z) (1 —oWi(z}) \1 + aW(z)
(pz))r—2w =
x (1 _ 52)2(11\2)/17 f(/') dz
i UZEE) L (W(z)+ay'2
L=1zi* o \1+aW(z)/
o(2) < Wi(z)+a )”"'2—1
(1—¢E2)* \1 +aW(z)
(p(z)) P2
X (1 _é:_.)2(p~2)x’p
(1—2,6)7 1

= S | E@ s P A dota)

Jf =)= S f(z,)

Jf = flz)dz

f(z) do(z)

Thus for every fe H, we have

(2) 18(2)17 =2 flz) do{z) = (&) — So f(z
(11}

p(1—|gj2)xr—2mw ‘f
(1+ap)* (p($)r 27



216 OSIPENKO AND STESSIN

As functions from H, are dense in A4, for every 1< p < oo, the equality
(11) holds for every function from A4,. It is easily seen that S, g(z,)>0.
Therefore it follows from Theorem 2 that if a € [0, 1] satisfies the condition
[g(z1)I/llgll 4,= 0, then S is an optimal aigorithm. For f=g, from (11) we
have

pU—jepye-2e
(1+ap) (p(©)" 27 1&1%

— (0 + a)(@(&))*” _(1—,02)2 ap(zy)
(T+ap)1— €% \T+ap) (T8 (@@)7 77

Hence

(p+a)l+ap) . a(l—p?)?
oA jg) PO o ey

We find by direct calculation that

lgl?, =

p T —————
”g“»‘l,, b4p2(1_lé|2)2

X(@‘ ‘) (1=a®)(1—p*)(1 +2ap +a*) p7b*

+1—2(1—p2)2b2+(1—p2)2b4>.

Since | gl 4,>0 for every ae[0, 1], the function in the left-hand side
of (10) is continuous as a function of a (ae[0,1]), and therefore the
equation (10) has a solution for every d e [0, §,]. We have

lp(z,)[** 4 (p2—1)(1—a*)+2+ap)**
|1_5_21|4/p |1_‘521|4/p
_al(p2—=1)(A=a*)+1+b71)YP (1 —p?)**

B (L= 1&12)*7 (1 —z,1%)*”

|g(z)l =a

and so the equation (10) means that lg(z )/l gll4,= 0.
The case e [d,, 5] can be considered in the same way if we set

=Lf (W(z) + a)? (p(z))? 2P
200 iz e W(2)(W(z) = p)(1 — Ez)2 =2

:L f (1 +aW(z))? (@(z))P~2P
2 zl=1 1 —pW(l _ EZ)Z(p_z),«p

flz)dz

f(z)dz.



SOME PROBLEMS OF OPTIMAL RECOVERY 217

Let now §268,. Then a=0, g(z) = p*?(1 — éz)~*7, and

1y — R f(z) do(z]
S 2@ 1g2)? 2 f(z) do(z) =E | ,_"7( . ;7 T
™ dp D (1 =R (1= Ezy?tr 2
PRVt
(L= [Py —27

(Here we use the fact that the Bergman kernel (1-¢2) 7 is the repro-
ducing kernel on 4,.) Thus

(1 . !512)2(;7*72)47

| R — . P
i - | 8 182)|7 7 flz) dole) = fE) = So flz). (12)
p* T

Now let us verify that |g(z,)|/] g] ., <J. Substituting f=g in (12} we
obtain

2p
1 — £12\2p—2)p P — p
(1= 120 gl = s

which yields

|man:<1—pZY¢=5<5
Hg”A,, L—|zy)? )

The proposition is proved. {

Now we consider the same problem for X=4,, p> 1. Put

(1/’27’[) j(z)" P(zl’ gi@)(P(é, ei&) _ ';-P(:l, eie))lq' 49
[P(E, )~ AP(z,, - )1e ! )

where P(¢ z)=1—£)%/|1—¢z|? is the Poisson kernel, 1/p+1/g=1,
(x),=Ix|*"" sign x, and

|f|q:(% J':" |f(ei6)|qd§)l,q.

Let us show that for every 0 <6 <, the equation

a(i)=35 (13)
has a solution 1e[0,(1+p)/(1—p)]. For z=eY and (=W(z}=
e'’(z—z)/{1 —Z,z) we have

P(éaz) o 1‘—,02 i—p
2 P, )= —
Pzrz) LTS,
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(p and ¢ are the same as in (6)). Thus for every z =¢",

1+
P(é: Z)_l——_f)— P(ZI,Z)SO.

Therefore

1
o <—+—p><0.
1—p

Since a(A) is continuous for Ae[0, (1 +p)/(1—p)] and «(0)=4,, the
equation (13) has a solution in this interval for every 0 < J < &,. We denote
this solution C,(¢, z;, ). For >4, we put C,(&, z(,)=0.

PropPOSITION 3. For X=h,, p>1,
(i) Soy=C,&, 2z(,0) y is an optimal algorithm,
(ii)
uy(0) = (12m) [ P, e®)(P(&, e®) = Cplé, 21, 8) Plzy, 7)) () 40
IP(E, ) — Cplé, 2y, 8) Plzy, )I4!

is a worst function,
(iii) the intrinsic error is

E(észl’és hp):uo(f): “P(qy: ')_Cp(£5 2y, 5) P(ZI")”q-I-éCp(C’ 21,5)'

Proof. 1t is known (see [10]) that every function from /,, p>1, has
boundary values almost everywhere. It is also known that boundary values
reconstruct this function by Poisson transformation. So for every ue Bh,,
p>1, we have by the Holder inequality

W(E) ~ €yl 21, 6) u(z,)
1 2= . . .
-5 [ e e - e ) P e uie) 0
<”P(é,')_cp(£:zlz 5)P(Zl7')nq-

On the other hand, the function

J(0)

_ (P(E, e®) — C, (& z,, 8) Pz, eiﬂ))(q)
=PE ) - Cy(E 20, 8) Pz, g+ < L0 20)
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and therefore (see [10]) uye Bh, and has almost everywhere boundary
values which coincide with f(8). Thus we obtain that

u(é)—Cp(é, Z15 5) uO(Zl)z “P(éa )__ Cp(i! 215 5) ‘P(le )”q
Hence

sup |u(¢)— Cp{é’ zy, 0) u(z,)] =u0(£)_cp(é? zy, Sy ulz,). {15}

ue Bhy,

Let 0<9<4,. It follows from the definition of C,(¢, z,, 6) that uy(z,)= 2.
Since C,(¢&, zy, ¢) >0, we have from (15) that u#y(&) >0 and

sup [u(8) = C,p(&, 21, 0) ulz))] = [uo(E)] = 0C, (&, 25, 9).

ue Bhp

For 6>, the same equality holds because C,(¢, z;,8)=0. Now the
proposition follows from Corollary 1. |

We can easily find C (¢, z,, ). In this case g=1 and

1 o . . .
a(1)=5- fo P(z,, ¢®) sign(P(¢, e®)— AP(z,, ¢™)) db.

In view of (14) the substitution z = (e ~“{ +z;)/{1 + Z,2 ) yields

2n
a(h) = f sign(P(p, ¢®) — 1) df
27Z 0

1o 1—p? \
T fo Slgn(l—z,ocos@-i—pz_l)dg

1, ,]Si;p_,
t+¢
2 Al Y —(1=p? 1-
={ — arccos Al tp)—(—p )—1, pslg—lﬂ,
s 2p4 1+p I—p
~1, it
L—=p

Hence for 0 <6 <1 the solution of (13) is

1—p?

Co(é,71,8)= '
(& 21, 9) 1+ 2p sin(nd/2) + p?

Iféd=1, every A€[0, 1p/(1 —p)] is a solution of (13).
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For 0<<d <1 and z=e¢" we have

1—p? .
d 2_Cao(§,zlﬁ5))

sign(P(E, z) — C.(&, 2, 0) P(zy, z)) =sign (ﬁm

=sign (Re W(z)+ sin g— 5)
W(z)+ tan(nd/4)
1 + W(z) tan(nd/4)

W(z)+ tan(wd/4)
1+ W(z) tan(nd/4)

=sign Re

Re arctan

N

In the case p=o0, 0<d < 1, we obtain

W({)+ tan(nd/4)
I+ W({) tan(nd/4)

4
uy(f)= - Re arctan

Thus the next corollary follows from Proposition 3.

COROLLARY 3. For X=h_

()
1—p? .
L, 0<o<1,
1+ 2p sin(xd/2) + p2° =
Soy=¢ l1—p
—Ly., o=1, ce[0,1],
Cl+py cel0.1]
0, o>1,

is an optimal algorithm. (In the case 6 =1, ¢ is an arbitrary value in [0, 1].)
(i)
W(z)+ 4

tan(nd/4), 0<d < 1,
1+ 4W(zy 5

R t
€ arctan 1, 5> 1,

4
”0(2)=‘TE

where A= {

is a worst function,

(iii) the intrinsic error is

4 A
E( 71, 6, h..) = to(§) == arctan 1”: o
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The solution of the equation (13) may also be obtained in direct form for
p=2. Nevertheless, we prove a more general result for the Hilbert space.

Let X be a complex (or real) Hilbert space. Consider the problem {1} in
the case W=BX, Y=Z=C(R), Lx={x, x;), Ix={x, x,)}. x{, x,e X. The
intrinsic error will be denoted by E(x,, x>, , X).

PROPOSITION 4. Let x| and x, be linear independen: elements from the
Hilbert space X. Put

8=min{5 1(xy, ol
N E !
Then
(1)
S p=2 (xy, xy) N
o) — ‘}w
“szz
where
I=1— & \/”-‘ﬁ”2 =i, )
[(x, x5)| lf\‘lez%Z ’

is an optimal algorithm,

(ii)
‘ _\/ Jx,]1° — ¢ (\‘ i (¥, x3) . A
Ao — AT AT A2
= Tl =l T T 2

is a worst elemen,

(iii} the intrinsic error is

‘ = ol . x)
E(xl,xz,o,XF\/l_".s—i ﬁmlzﬂl(rf ol sl
.\2” |X2” sz”

Proof. We have

7

(X1, x5) i
(X, Xy -4 —J—:%‘ X2

sup [(x, x1)— So(x, x,)| = sup

Ixl <1 i<t | xa J
(xioxg) |
SlfiT AT T ”
[R9Y \
? 3
_ \/HXLH2 l2eal” = 11, X))
- | z2_ 2 N
l["z” &

640 70.2-7
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Moreover

(xy, x4) >=” _A(xl’XZ)
ETEAEY A  PNERC &

(%0, X1) — So(xg, X5) = (xm xy—4

Thus |xefl=1 and SUP )« <1 1(%, x1) = Solx, x2)| = (X0, X1) — So(x0, X1).
Since

AL —=2) |(xq, x,)|?
(xla-XZ) {
x> 72

Solxg, X3) =
B

xl—i

and

T3
(ool = e Bl (1 )=

|2 ||x2|12~ [(xy, x5)l

we obtain Sy(xg, x,) =0 ||Sy|. To finish the proof of the proposition we
need only apply Corollary 1. |}

The problems of optimal recovery in Hilbert spaces from inaccurate data
were investigated in [117]. (See also [2] for a more general situation.)

Let X be a Hilbert spaced of functions f: £ — C(R) with the reproducing
kernel K: 2 x Q - C(R), i.e.,

J(2)=(f(), K(+, 2))

for every fe X and z € Q. Consider the problem (1) for W= BX, Lf = f(¢),
If = f(z,). If K(-, &) and K(-, z,) are linearly independent (i.e., the class BX
distinguishes the points ¢ and z,), then from Proposition4 we get
Corollary 4.

COROLLARY 4. Put

€ =min {6 M}
' JKE©)
Then
(i)
Soy=4 ;(c%% s
where

Jef___ & \/K(f,é)K(zl,zl)—lK(zl,g”)R
IK(zy, &) K(z,, x,)—¢&?
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is an optimal algorithm,

(if}

is a worst function, and

(iii} the intrinsic error is

< / g . |K(z(, E)I°  Kl|(zy, &)
E, 2,0, X)= [l ——— [K( E)— .
(& 2 ) K(z, zy) \/ (&< Kz, z5) e Kz, zy)

We list some examples of Hilbert spaces with reproducing kernels:

: L I —
(1) Hy K& 2)=(1-¢8) " (f&)=q | fle") gle™ db,
T Jg
oy -2 1 .
(2) A5, K(&2)=(1-¢2)77, (f8)=—] f(z)8(z) dolz)
(3) A, K(& z)=2Re(l—¢z)" " —1, (u, u):—l—— Jjn u(e®) v(e) d,
2n 0

~

, o1
(4) a,, K(& z)=2Re(l —¢2)"*—1, {x, v}=;J w(z)v{z) do(z).
D

7

Note that we can obtain the generalization of Schwarz's Lemma in the
same way as (9):
sup =E(, 2,6, X),

feBX
ISzl <o

where E(&, z, 6, X) can be found from the corresponding proposition for

X=H, A,, h,, and a,.
Put

D(é’zlaéa X_)z {ZED . lgO(Z)' go‘}a

where X=H,, A,, h,, or a, and go(z) is a worst function for the
appropriate recovery problem. Consider the information operator
If=flp. 2.6 x) instead of If = f(z,) and let Y be the space of functions
which are continuous in D(¢, z,, 6, X) with the norm

[yll=" sup |z}l

ze D(&, 71, 6. X)
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Tt follows from Corollary 1 that the optimal algorithm, the worst function,
and the intrinsic error will stay the same. Thus the additional information
(with the same inaccuracy) about the behaviour of the function f in
D(¢, z,, 6, X) will not decrease the intrinsic error. In other words, the point
z, forms some “shadow” set in which any additional information is useless.

3. OpTIMAL RECOVERY OF THE DERIVATIVE FROM INACCURATE DATA

We turn now to the problem (1) for X=H,, Z=C, Y=12, Lf=f'(0),
If =(f(=h), f(h)), he(0,1). The intrinsic error will be denoted by
E(h,d, H,).

There is the well-known algorithm

Lo fh) = f(—h)
ro~tE=

which is not optimal even in the case 6 =0 (see [12]). It was shown in [2]
that

vy e SO F(—h)
fe)~(1—h) E==s

is an optimal algorithm for 6 =0 and p= co. It follows from [8] that this
algorithm is optimal for =0 and every 1 < p< . Moreover it is also
optimal for 6 =0 and X=4_, (see [9]).

Now we consider the case when the value of functions in the points —h
and h are known with an error <06 in the norm of / 5, that is, we know y,
and y, such that

(=) =y +1f(h)—y,|"<69, 1<g<oo,
max{|f(—h)—y.l, |f(h) = yal} <3, q= .

Put

1/p, 1< p< oo,
gpzi/l’ PE® si=2wmw(iah),  5=h2m,

0, p=oo,
1, 0<d6<dy,
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Let ae [A, 1] be a solution of the equation
ha?__hz l_azhz 2gp—1 )
( ) ) 525, (16)

a()(1— k27 (1 — 282K + a° )

where 0 < 8 < d,. (The existence of the solution follows from the continuity
of the function in the left hand side of this equation). Put a=1# for § > §,.

PROPOSITION 5. For every 020, 1 € p, and g< 2

(1)
(W1 —a*h?)* ! ) 3y — p,
a(0)(L — h*)t— 2 24

, o
f0)x Soy=

is an optimal algorithm,

(i)

. i _h4 €y z(az—zz)(l _a222)23p~!
golz)= 372 L 4 7,225
1—2a°h*+a a2 1 — Az )y

is a worst function,
(iii) the intrinsic error is

. } a?_ 1—;’14 £
Edb o )= o\ T2z a)

Proof. Put
Z(az _ 22)(1 _ aZZZ)Zep— 1 1— 61222\,2

g(z)= 2(z)(1— /1222)28,; ’ o(z) = (1 — b3z

For every fe H, and z=¢" we obtain by the residue theorem

: __n 1 e
f(O)—SOIf_ _0((0) % ‘[I:I=l 22(22_112)(1_,1222}3725’, f(g)d_
2 2m
«(0) 27 z z r2 < O
20 3% ), B 18IS, 1sp<eo
= hZ 1 I _ de B |
S0 3 b ED 0G| 2y de. p=ce.

For f =g we have from these equations

, 1 —2a’h* +a*
et =Nl m="———77""
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Note that if p = o0, |g(e®)| = 1. Now to use Corollary 2 we must prove that
Ig0=5a*=2—58; (—1,1)
if 0<d<d, and |Igolp<d if 6=6,. Let 0<d<d,. Since
go(—h)= —go(h) it is sufficient to prove the equation
golh)=02"%

which coincides with (16). If 6 = d,, go(z)=z and |Ig,) 2= 2% =4,<0.
This completes the proof of the proposition. ||

Note that S,y =0 for 6 = h2%. If § < 2% we can consider the problem of
finding such a value A, that

El(hy, 8, H,)= min E'(h, , H,).

he(0,1)

The value h, is called an optimal value of . We give the solution of this
problem for p= oo,

PROPOSITION 6. For p= 0, 1 <g< o0, and 0< 0 <2% the optimal value
hq satisfies the equation

Shy+2' ~h) — 5221 ~thy— §=0. (17)
The equality

lim E(h, 8, H.,)=h?

he(0,1)
holds. The optimal value hy can also be found from the equality

ho=/k sn(K/3, k),

where k is determined by the equation

Za:‘= hm(m+1) o
k=2hl/4 m=0 ""1 - h o=e nA'/34 (18)
VE= i e b
or
K A
X34 (19)

here K, A denote the complete elliptic integrals of the first kind with respec-
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tive moduli k, A=38%4"% and K', A' denote the ones with complementary
modull.

Proof. From Proposition 5 we have

(a’, O<
=

Hh2%
E (A, 9, HOO)=i1 5

6<
hzﬁq’
where ae [/, 1] and is determined by the equation

a*— h?
h——5=082"%, (20}
1—a’h? e
Extracting a” from this equation and minimizing it as a function of
he (0, 1) we obtain tha the minimum 4, is unique and satisfies the equation
(17). Taking a derivative from (20), we have

a’-—-h? 1—-a° 1—it
Lo o T gen——1
= oy T T ey

Thus if 4, is minimum then gg(h,) =0, where

i~

a’—z? ,

(21
. A}
1—-0222

N

golz)=

kN

Now it is sufficient to find a function gg(z) like (21) such that for scme
hoe(0, 1), golhy)=02"% and gi(hy) =0. 1t follows from Lemma 2.2 of [ 7]
that this function is a Blaschke product of order 3 with minimai norm

lgoll = max _ |golz)| =627"%,
cel—=k k1

[ 2RV

where £ is determined by the conditions !go(—\/%)l = ]go(ﬁ)l =02"%,
From [13] this function can be written in the form

ksn*(2K/3, k) —z*

| —ksn(2K/3, k) 2%

go(z)=1z
This function can be rewritten by using the first fundamental transforma-
tion of degree 3 (see [14])
go(z)=/Asn(3Au/K, ),  z=./ksn(u, k).

where A=05%4"% and k satisfies (18), (19). If we put h0=\/;’; sn(K/3, &}
then go(ho)=902"% and go(ho)=0. This completes the proof of the
proposition.
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It is easily shown from (17) that

hO — 2 —{1 +£q),"35 1/3 + 0(0‘ 5;’3)’

and consequently

10.

11

12.
13.

14.

min E(h, 5, H,)=4"11%3527 4 0(5%).

he{0.1}
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